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Theory of backward second-harmonic localization in nonlinear left-handed media
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Recent research on photonic crystals possessing a quadratic nonlinear response has revealed a second-
harmonic light localization phenomenon that originates from an all-angle phase matching between counter-
propagating Bloch modes at the fundamental and double frequencies [E. Centeno et al., Phys. Rev. Lett. 98,
263903 (2007)]. In this paper, we develop an electromagnetic theory describing the nature of this parametric
light localization, which appears in properly design metamaterials or photonic crystals exhibiting nonlinear
left-handed behaviors. We demonstrate that interferences between converging phase-matched and diverging
anti-phase-matched waves create a localized second-harmonic wave focused on the pump emitter on the scale
of half the wavelength. This light trapping is accompanied by the enhancement of the second-harmonic
intensity, which linearly increases with the size of the two-dimensional domain. We finally show that the
second-harmonic localization effect previously proposed for GaN photonic crystals can also be obtained with

LiNbO; material.
DOI: 10.1103/PhysRevB.78.235101

I. INTRODUCTION

Since the pioneering work of Yablonovitch! and John,?
considerable progress has been made on the light control in
microstructured materials. The possibility of trapping light
on the wavelength scale in periodic index materials, called
photonic crystals (PhCs), has opened new investigation fields
in both fundamental and applied nano-optics.> The localiza-
tion of light in PhCs is based on the excitation of localized
states associated to resonant frequencies that lie within pho-
tonic band-gap ranges. In practice, it amounts to locally
breaking the symmetry of the crystal by inserting defect lat-
tices. The reduction in the laser threshold or the enhancement
of nonlinear processes are some examples of the capacity of
PhC microcavities to increase light-matter interactions.*® In
particular, efficient second-harmonic generation has been ex-
plored in single and dual resonant PhC microcavities.””!!
This frequency doubling process involves a light localization
mechanism at the fundamental and/or at the second-
harmonic frequencies that increases the lifetime of photons
inside the cavity and thus the conversion efficiency.'” Be-
sides this approach, efficient frequency doubling based on
the phase matching technique between the fundamental field
(FF) and the second-harmonic field (SHF) has also been con-
sidered in these periodic systems.'>~!> In fact, PhCs are par-
ticularly reliable materials for achieving the phase matching
condition since their dispersion properties can balance the
optical index dispersion of semiconductors.'® Efficient
second-harmonic conversion is obtained when this momen-
tum conservation and the light confinement are simulta-
neously combined within PhCs.!"-20

Beyond these localization effects, PhCs and more gener-
ally metamaterials have opened new routes for the control of
the second-harmonic emission. A second-harmonic super-
prism effect, which consists in producing large shifts of the
SHF propagation direction for small pump field variations, is
an example of the smart light-emission control achieved in
these systems.?! More recently, an all-angle phase matching
condition has been proposed in 2D PhCs.?? This isotropic
phase matching relaxes the angular dependence of the mo-
mentum photon conservation and facilitates the second-
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harmonic conversion because no specific alignment between
the pump and the device is needed in experimental setups. In
addition, an original backward SHF emission in nonlinear
metamaterials and PhCs has been recently reported underlin-
ing the similarity of both systems in achieving nonlinear left-
handed (LH) effective properties.?>2° This counterpropagat-
ing emission is obtained when the effective phase indices at
the fundamental and double frequencies are opposite. In such
a phase matching configuration, the second-harmonic gen-
eration process is reversed in comparison to the conventional
frequency conversion. Indeed, when the FF and the SHF are
phase matched, the associated wave vectors k,, and k,,, are
parallel. Now, because of the left- and right-handed (RH)
behaviors of the material at w and 2w respectively, k,, and
the Poynting vector S, are antiparallel at the fundamental
frequency while k,,, and S, are parallel at the double fre-
quency. Consequently, S,, and S,,, are antiparallel leading to
a second-harmonic emission propagating in the direction op-
posite to the fundamental one. These specific electromag-
netic properties of such materials that we denote by
w-LH/2w-RH may be obtained from the effective permittiv-
ity and permeability in metamaterials or from the combina-
tion of counterpropagating fundamental and second-
harmonic Bloch modes in PhCs. Properly designed PhCs can
combine the all-angle phase matching condition with left-
handed properties leading to generation of second-harmonic
localized emission.?> Unlike light localization effects that
rely on photonic band gaps, this nonlinear mechanism in-
volves fundamental and second-harmonic Bloch modes in
the photonic conduction bands and thus does not require the
existence of defect lattices. Moreover, this parametric local-
ization process distinguishes by two fundamental properties
being that the second-harmonic field is focused on the half-
wavelength scale and its location is only determined by the
emitter position.

In this work, we propose an electromagnetic theory de-
scribing this uncommon second-harmonic localization pro-
cess, initially observed for feasible two-dimensional (2D)
PhCs etched in GaN semiconductor.?? For that purpose, we
consider homogeneous left-handed materials presenting a
second-order susceptibility tensor. In Sec. II, these concepts
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are first applied to one-dimensional (1D) media to allow us
to show that second-harmonic localization originates from
the interaction of backward phase-matched waves and for-
ward anti-phase-matched waves. Then, we show that in two-
dimensional left-handed media, this mechanism enhances the
second-harmonic electromagnetic density and focuses the
signal at the diffraction limit. In addition, the localized wave
position is only determined by the emitter position since this
parametric light localization process is achieved in homoge-
neous media. This theoretical analysis is successfully com-
pared with numerical results obtained from a direct integra-
tion of Maxwell’s equations based on a finite element
method. In Sec. III, conditions for backward second-
harmonic localization initially obtained in GaN 2D PhCs are
demonstrated for a lithium niobate (LiNbOs) PhC. By taking
into account refractive index dispersion of LiNbOj in the
photonic band-structure computation, we show that this ma-
terial makes it possible to combine the isotropic phase
matching condition with left- and right-handed properties at
o and 2w. Simulations based on a multiple-scattering
method confirm that the location of the focused second-
harmonic wave is only dependent on the source position
within the PhC. Finally, the width of the confinement area is
successfully compared with our theoretical predictions.

II. THEORY OF BACKWARD SECOND-HARMONIC
LOCALIZATION IN LEFT-HANDED MEDIA

In this section, we focus on homogeneous nonlinear me-
dia presenting a second-order susceptibility tensor y? re-
duced, for the sake of simplicity, to a single component d3;.
Without loss of generality our study is restricted to the TM
polarization (electric field perpendicular to the propagation
plane) and two kinds of homogeneous media are considered:

(i) o-RH/2w-RH media, which possess right-handed
properties at both w and 2w (such as conventional media).

(ii) w-LH/2w-RH media, which exhibits left- and right-
handed behaviors at w and 2w, respectively (these conditions
can be achieved in metamaterials or in photonic crystals).

In order to satisfy the phase matching condition, the rela-
tive permittivities and permeabilities satisfy the relations
e(w)=e(2w) and u(w)=wu(2w) in the w-RH/2w-RH media
and e(w)=-¢(w) and p(w)=-u(2w) in the w-LH/2w-RH
media. In both cases, the right-handed second-harmonic
properties are ensured by choosing ¢(2w) >0 and w(2w)=1.
In addition, regardless of the optical properties of the media,
the undepleted pump approximation is assumed (weak SHF
conversion is considered) so that the FF and SHF satisfy the
following equations:

AE,(r,0) + K2E,(r,0) =0, (1)

2
AE,(r,2w) + k3 E,(r,20) = — 4(%) ds3(r,20)E,(r,w)?,

(2)

where the wave vectors of the FF and SH fields satisfy the
phase matching condition k,,=2k,,.

In Sec. I A, a rigorous theory of the backward second-
harmonic localization in one-dimensional homogeneous left-
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handed media is proposed. This approach is then generalized
for two-dimensional structures in Sec. II B.

A. One-dimensional left-handed homogeneous media

We begin with the well-known SHF conversion in a con-
ventional right-handed medium (w-RH/2w-RH) of length L
illuminated by a pump field at normal incidence. When the
phase matching condition is satisfied, the generated intensity
I3 presents a quadratic growth.?” In our case, at the output
boundary, the intensity is given by I~ (L)=C?L?, where C
depends on the FF intensity, ds3, , and on the optical indi-
ces. Consequently, for a pump field propagating toward the
positive x direction, the electric SHF is described by a plane
wave having an amplitude growing linearly with the distance
(the '’ time dependence is assumed),

E?H(x,Zw) = Cxe hao, (3)

This behavior is drawn in Fig. 1(a) for a conventional me-
dium (w-RH/2w-RH) with positive matched indices at both
frequencies. This computation is supported by a finite ele-
ment method implemented in a commercial software includ-
ing perfectly matched layers (PML) boundary conditions.?®

As shown by Shadrivov et al.,*> a more interesting coun-
terpropagating frequency conversion process can be obtained
in metamaterials exhibiting a LH behavior. We illustrate this
uncommon nonlinear effect in a left-handed slab of length L
possessing negative and positive indices at w and 2w, respec-
tively, (w-LH/2w-RH) embedded in a linear right-handed
medium of positive indices equal to Ve(2w)u(2w) at both
frequencies. This choice of surrounding material prevents
spurious SHF reflections since at 2w the optical indices are
perfectly matched to the nonlinear slab boundaries. The
simulation presented in Fig. 1(a) shows that the SHF is back-
ward generated yielding to a maximal second-harmonic in-
tensity located at the input interface of the slab. In the frame-
work of the undepleted pump approximation, the second-
harmonic conversion is simply reversed in the w-LH/2w-RH
medium and presents a similar conversion efficiency as for
the RH one, /50(L)=151(0). The backward phase-matched
SHF can therefore be represented by a wave propagating in
the negative x direction with a maximal amplitude reached at
the input interface of the slab,

EM(x,20) = C' (L - x)e't2e*, 4)

From the equality of the maximal intensities, it can be seen
that |C|=|C’|. From Egs. (3) and (4), the simple correspon-
dence EIZ‘H(x,Zw)=E§H(L—x,2w) between the SHFs can be
made by considering the coordinate transformation x— L
—x providing that the constants C and C’ are linked by a
phase term

C' = Ce k2t (5)

This result is numerically demonstrated by choosing k,,L as
an odd multiple of 7 leading then to a phase term equal to —1
[Fig. 1(b)]. Under these conditions, the second-harmonic
electric fields oscillate in the LH and RH media in opposite
phase, which confirms the existence of the above phase term.
Consequently, in the undepleted pump approximation, the
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FIG. 1. (Color online) (a) Second-harmonic intensity in a nonlinear medium of length L=19 a.u. for a pump source propagating in the
positive x direction at the fundamental wavelength Az=4 a.u. Both the pump field amplitude and the second-order susceptibility component
d33 are normalized to unity. For a conventional medium of indices n(w)=n(2w)=3, the intensity presents a quadratic growth in the positive
x direction (blue curve). For a LH medium with n(w)=-n(2w)=-3, the SHF is backward generated with an intensity increasing in the
negative x direction (black curve). (b) Real part of the electric SHFs for both RH and LH media (blue and black curves, respectively).

coordinate transformation x — L—x makes it possible to de-
duce the backward conversion in LH media from the con-
ventional process in RH homogeneous media.

These results provide a conceptual basis for the full de-
scription of the backward second-harmonic localization ef-
fect. The second-harmonic localization appears when the
pump source is placed in the nonlinear LH medium and
originates from a subtler dynamic. To illustrate this effect,
we consider a point source located in the middle of a non-
linear w-LH/2w-RH slab of length 2L. This device can be
divided into two symmetric regions, R~ and R*, correspond-
ing to negative and positive x coordinates, respectively (Fig.
2).

In each region, the Poynting vector of the FF points out-
ward from the source whereas the wave vector k,, points
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FIG. 2. (Color online) Illustration of the backward second-
harmonic localization process. A point source is placed in the center
of a nonlinear w-LH/2w-RH medium (red line). The FF wave vec-
tor k,, is directed toward the emitter position and its Poynting vec-
tor S, points outward. In each region, the amplitude of the back-
ward phase-matched SHF increases toward the pump source. In the
opposite regions, these fields propagate in an antiphase matching
configuration and thus exhibit a constant amplitude C’L. The total
SHF is the combination of a backward phase-matched wave and a
forward anti-phase-matched wave.

toward it (LH behavior at w). By virtue of the phase match-
ing condition, the SHF propagates toward the fundamental
emitter with both parallel Poynting vectors and wave vectors

Ky, Considering the above results, the SHFs Ej (x) and
E;w(x) in regions R~ and R* satisfy the following relations:

E;,(x) = C'(L + x)e'*2er,

El (x) = C'(L - x)e 2o, (6)

However, when the wave E;w(x) [resp. E;w(x)] propagates in
the opposite region R* (respectively, R") its wave vector Kk,
is antiparallel to k,, thereby leading to an antiphase match-
ing configuration (Fig. 2). The amplitude of E;w(x) [resp.
ﬁ;w(x)] then remains constant and equal to C’'L in the area
R* (respectively, R™). In sum, the total SHF in each region is
the superposition of a phase-matched SHF having an ampli-
tude growing toward the source and an anti-phase-matched
field of constant amplitude,

E;,(x) = C'(L+x)e’2" + C'Le™™ " in R,

E; (x)=C'(L-x)e ™" + C'Le*2* in RT.  (7)

In the vicinity of the fundamental source emitter, these fields
present similar amplitudes, yielding an interference intensity
pattern,

L, (x) =|C"PLY 1 + (1 +x/L)?

+2(1 + x/L)cos(2ky,x)] in R,
I, x) = |C' L1 + (1 = x/L)?
+2(1 —x/L)cos(2k,,x)] in R*. (8)

The direct simulation supported by the finite element method
software confirms this dynamic [Fig. 3(a)]. The comparison
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FIG. 3. (Color online) [(a) and (b)] Normalized second-harmonic intensity of the localized SHF field. The maximal intensity is obtained
in the center of the w-LH/2w-RH medium. (b) Comparison of the intensities derived numerically (solid curve) and analytically from Eq. (8)

(circles).

of the analytical solution of Eq. (8) with this computation
shows that the 1D backward second-harmonic localization is
perfectly described by this theory [Fig. 3(b)]. In accordance
with Eq. (8), the generated intensity presents an oscillating
pattern of spatial periodicity Ax=\gy/2n(2w) which is the
signature of the interference process between backward and
forward waves.

The maximal intensity, I,,(0)=|C’|*(2L)?, is centered on
the point source and is equivalent to the intensity reached
through a conventional RH medium of length 2L. Although
no specific field enhancement is observed in the one-
dimension case, these results show that nonlinear
w-LH/2w-RH materials are able to trap the SHF within the
structure.

B. Two-dimensional left-handed homogeneous media

The study of the second-harmonic localization in 2D LH
media follows the same framework as for the 1D version. We
first develop the basic concepts of the frequency doubling
process in RH media and then use a coordinate transforma-
tion to derive the expression of the backward second-
harmonic waves. Finally, we conclude with the description of
the parametric light localization in LH media.

We start with the second-harmonic conversion in
w-RH/2w-RH media presenting right-handed properties at
both fundamental and double frequencies. A point source
emitter is centered inside a circular area of radius R filled by
a ¥ nonlinear material. In addition, the phase matching
condition is assumed to be met along all directions. Although
this unusual isotropic phase matching condition is unrealiz-
able in common nonlinear devices, 2D PhCs have proven
their ability to obtain it.>? The electric FF satisfying Eq. (1) is
simply the 2D Green’s function and considering a e’ time
dependence, the FF propagating in the w-RH medium can

then be written as
ER(r, 0) = EHP k1), 9)

where r is the radial coordinate, H )(k r) is the Hankel func-
tion of the second kind, and E| is the electric-field amplitude

of the source.?® Although no analytical solution of Eq. (2)
can be found in the two-dimensional case, a far-field expres-
sion of the SHF can be obtained by considering the
asymptotic expression?® of H{?(k,,r) when k> 1,

2e —ik -
EM(r,w)=E \/>

Solving Eq. (2), we find that the asymptotic solution of the
SHF is a plane wave of constant amplitude,

E?H(r,Zw) = Ce kaur

where C=—4|Ey|*dy;/ .

This result reveals an important difference between 1D
and 2D second-harmonic generation processes. Actually, un-
like the 1D case, the second-harmonic efficiency is almost
independent of the size of the 2D RH medium. This behavior
is confirmed by the direct simulation presented in Fig. 4(a)
and originates from the 1/r decay of the fundamental inten-
sity. Indeed, beyond a distance of half the fundamental wave-
length, the pump field is almost completely depleted so that
the second-harmonic conversion stops.

To improve the second-harmonic near-field description
around the source emitter, the electric field is approximated
by the following expression:

E?H(r,2w) = C\"kangz)(kzwr) ,

_,'7,-/4. (10)

(11)

(12)

which converges to the asymptotic expression (11) when
ky,r=1.

We have seen that in 2D RH media the second-harmonic
emission is uniformly distributed along all directions and
thus limits the conversion efficiency. On the contrary, we
will now show that in LH media the all-angle phase match-
ing condition generates 27 azimuth backward second-
harmonic waves that constructively add up around the pump
emitter. This SHF localization is demonstrated inside a non-
linear w-LH/2w-RH disk of radius R presenting LH and RH
properties at the fundamental and double frequencies [&(w)
=-£(2w) with e(w)<0 and w(w)=—u(2w)=-1]. This 2D
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FIG. 4. (Color online) [(a) and (b)] Normalized modulus of the electric SHF for a 2D nonlinear medium of radius R=1 (arbitrary units).
The pump source is placed in the center of the disk and emits a FF at the wavelength Agr=R. For a RH medium phase matched along all
direction [the indices are n(w)=n(2w)=4], the SHF reaches a maximal value after a length equal to about \g;/2n(2w) (blue dashed curve).
For a w-LH/2®-RH medium of indices n(w)=-n(2w)=-4, the SHF is enhanced by a factor 17 (black solid curve). (b) Comparison of the
SHF obtained with the numerical simulation (black solid curve) and with Eq. (14) (blue dashed curve).

nonlinear medium is embedded in a RH linear one of posi-
tive refraction index at both frequencies [n,=n,,
=\Ve(2w)u(2w)]. The perfect optical index matching at 2w
prevents SHF reflections at the boundary of the nonlinear
disk. Similarly to the 1D problem, we apply the coordinate
transformation r— R—r to obtain the expression of the back-
ward SHF in the LH disk,

EY(r20) = C\ko R/ 1 - I%Hg”(kzwr). (13)

Note that the Hankel function of the second kind is replaced
by a function of the first kind to describe the counterpropa-
gating nature of the backward phase-matched wave. The
complete description of the second-harmonic localization ef-
fect requires introduction of a forward anti-phase-matched
field, which propagates outward the energy stored within the
left-handed material. This wave appears as a Hankel function
of the second kind with a constant amplitude C\k, R equal

to the maximal amplitude reached by E]Z“H at the center of the
disk. The total SHF propagating in the w-LH/2w-RH disk
can then be written as

— r —
EN(r20) = CVky R\ 1 - EHf)”(kzwr) + C\ky RHP (kp1).
(14)

Since at the boundary of the nonlinear circular medium we
have EZLH(R ,2w)=E§H(R,2w), no specific second-harmonic
emission enhancement is observed outside the left-handed
medium [Fig. 4(a)]. On the other hand, the distribution of the
SHF is radically different in terms of light confinement. In
the vicinity of the source emitter, the interferences between
inward and outward waves produce an oscillating intensity
pattern that can be approximated by

R () = 4| CP (ko R) oy ). (15)

The minima of the second-harmonic intensity oscillations
correspond to the zeros of the Bessel function J, and the
maximal intensity I51(r=0)=4|C|*(k,,R) is obtained at the
pump source location. Therefore, unlike RH materials, the
second-harmonic intensity is confined in the device and in-
creases linearly with the radius of the LH disk. The local
intensity factor p defined by the ratio of the maximal inten-
sities obtained in the LH and RH materials grows linearly
with the radius of the nonlinear disk,

p_éﬁw)
I5(R)

Direct numerical simulations based on the finite element
method confirm this light trapping effect (Fig. 4). The oscil-
lating pattern of the modulus of the SHF is the signature of
this interferential process that leads to the intensity enhance-
ment in the nonlinear left-handed medium [Fig. 4(a)]. Figure
4(b) shows the good agreement between the SHF modulus
derived from Eq. (14) and the numerical result. It is worth
noting that the analytical and the numerical values of local
intensity factor, which are, respectively, equal to 200 and
300, indicate that the SHF energy density is enhanced by two
orders of magnitude in 2D LH devices.

In the neighboring of the pump source, the combination of
two conjugate waves of similar amplitudes creates a second-
harmonic standing wave whose confinement is deduced from
the expression of intensity given in Eq. (15). The localization
radius determined by the first root of the Bessel function is

240 gy

T o r nQw)’ (17)

whose dimension is smaller than the SHF wavelength [R),.
=0.38\gy/n(2w)].
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FIG. 5. (Color online) (a) Dispersion surfaces of the second (red) and eighth (blue) bands. The all-angle phase matching condition
corresponds to the circular intersection curve of these surfaces. The photonic band structure is shown in the inset. (b) Isofrequency curves
computed at a/\x=0.545 (red circle) and at a/Agy=1.09 (blue circle). The isotropic phase matching condition is obtained by coupling Bloch

modes with antiparallel group velocities (red and blue arrows).

One can remark that this parametric focusing presents
some similarities with refocused acoustic signals generated
by time-reversal techniques. Indeed, as shown by de Rosny
and Fink,*° time-reversed signals originate from a compa-
rable interference mechanism between converging and di-
verging waves, which in turn limits the resolution. Here, Eq.
(14) shows that in the vicinity of the pump source, the total
second-harmonic field is the superposition of two conjugate
fields where the backward phase-matched wave can be iden-
tified as the time-reversed signal. As for acoustic time-
reversed signals, the second-harmonic localized field is
diffraction limited with a full width at half-maximum
(FWHM) that approaches the half-wavelength [FWHM
=0.36Agy/n(2w)].

III. BACKWARD SECOND-HARMONIC LOCALIZATION
IN 2D LITHIUM NIOBATE PHOTONIC CRYSTALS

Although the backward second-harmonic localization pro-
cess requires very specific conditions, this effect has already
been evidenced in the case of a 2D PhCs etched in GaN.?
The aim of this section is to show that LH phase-matching
conditions are not restricted to GaN but can also be met in
other nonlinear materials as for example in lithium niobate
(LiNbOj3). Lithium niobate is known for its nonlinear prop-
erties and has been recently used to realize 2D and three-
dimensional (3D) PhCs.3!33 Its strong second-order suscep-
tibility (d33=43.9 pm/V) may constitute a striking
advantage for generating efficient second-harmonic signals.
Here, we consider a 2D PhC consisting of an array of air-
holes embedded in a LiNbO; material. The remarkable opti-
cal properties of w-LH/2w-RH media described previously
are found in PhCs when the photonic band structure com-
bines counterpropagating Bloch modes that are phase
matched along all directions. These conditions entirely rely
on finding PhCs with opposite effective phase indices at w
and 2w. An effective phase index is associated to an isotropic

dispersion surface and its sign is determined by the local
surface curvature.3* Since the hexagonal symmetry facilitates
the obtaining of isotropic dispersive relations, a triangular
array of airholes of lattice period a and radius r=0.425a is
considered. The determination of the suitable lattice period is
made in the following way: the operating fundamental fre-
quency is initially fixed to determine the optical index of the
dielectric material at w and 2w. Then, two sets of band dia-
grams are computed for each index as a function of the re-
duced frequency a/\ and are tested against the criteria men-
tioned previously. This approach makes it possible to deduce
the lattice period of the desired structure and can be repeated
for different pump frequencies. Let us start with the LiNbO5
refraction indices n(w)=2.16 and n(2w)=2.25 corresponding
to a fundamental wavelength N\y=1 wm. Among the photo-
nic bands, the top of the second and eighth bands are locally
isotropic around the I' point and present opposite curvatures,
see the inset of Fig. 5(a). These results are visualized in the
surface dispersion diagram of Fig. 5(a) by plotting the eighth
band for both half frequencies and wave vectors. The inter-
section of these surfaces reduced to a circle, which corre-
sponds to the isofrequency curve (IFC) obtained for a/Ag
=0.545.

The opposite curvatures of these dispersion surfaces pro-
vide the necessary w-LH/2w-RH properties to the PhC since
the group velocity v,(w) [given by V,w(k)] and the Bloch
wave vector k,, are antiparallel at  while v,(2w) and k,,,
are parallel [Fig. 5(b)]. Therefore, in the phase matching con-
dition k,,=2k,, the SHF propagates in the direction oppo-
site to that of the FF. Finally, a 2D LiNbO; PhC of lattice
period a=545 nm and radius airholes of 232 nm exhibits a
LH behavior at the fundamental wavelength A\p=1 wm and
generates a backward SHF at 500 nm in all directions. Con-
sequently, backward second-harmonic emission or localiza-
tion effects can be observed when an external pump source
illuminates this PhC or when a internal source is
considered.?? In addition, these nonlinear effects can be ex-
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FIG. 6. (Color online) (a) and (b) represent, respectively, the modulus of FF and SHF inside a hexagonal 2D PhC in the case of an
off-centered pump source located at (—1.8;1.2) um. (b) The SHF is localized in the closely vicinity of the pump source emitter.

tended through the entire visible spectrum by keeping the
filling factor fixed and scaling the lattice period a accord-
ingly.

The backward second-harmonic localization is now dem-
onstrated for an off-centered source placed inside a finite-
size PhC (of lattice period a=545 nm and airholes radius
232 nm) and emitting a TM-polarized FF at N\;=1 um. The
d3; component is chosen perpendicular to the axis of the
airholes etched in the (xOy) plane. The fundamental and
second-harmonic electric fields are computed using a
multiple-scattering method extended to parametric genera-
tion process.*® Since this modal method deals with finite-size
2D PhC, no particular boundary conditions (such as PMLs)
are required. Figure 6 shows that the FF spreads over the
entire PhC area since it corresponds to a propagating Bloch
mode. Conversely, the SHF is confined in a restricted area
centered on the pump source location. In accordance with the
above theory, the location of the localized SH signal is only
determined by the source position. Moreover, the localization
radius deduced from this simulation is evaluated to 800 nm
which agrees well with the theoretical radius R;,,=880 nm
derived from Eq. (17) when the index n(2w) is approximated
by the effective index n.;=0.227 deduced from the IFCs of
Fig. 5(b).

Finally, the backward second-harmonic localization ob-
served in PhCs satisfies the principal property reported for
homogeneous left-handed media since the source emitter lo-
cation determines the second-harmonic localization position.
However, in periodic index materials, this light localization
originates from interferences between converging and di-
verging Bloch waves instead of cylindrical waves in homo-
geneous media. These numerical results also prove that fea-
sible PhCs drilled in LiNbO5 materials provide an efficient
solution for realizing left-handed materials capable of refo-
cusing a second-harmonic signal on the scale of one wave-
length. Since the introduction of a powerful internal source
within the device might be difficult in experimental setups,
we suggest to extend these results to the case of 2.5D PhCs
etched in nonlinear membranes illuminated by an off-plane

focused pump beam. The combination of the second-
harmonic conversion enhancement already demonstrated in
these structures'”!' together with the LH properties dis-
cussed here may open new opportunities for the design of
efficient novel compact frequency doublers.

IV. CONCLUSION

We have investigated a second-harmonic light localization
effect in x'» nonlinear media exhibiting left- and right-
handed behaviors at w and 2w, respectively. The theory that
we have proposed shows that this localization effect origi-
nates from an interference mechanism between backward
phase-matched and forward anti-phase-matched waves. This
effect combined with an isotropic phase matching condition
in two-dimensional left-handed materials yields the focusing
of the second-harmonic signal on the scale of half the wave-
length. The interferences between converging and diverging
second-harmonic waves enhance the local intensity stored
around the source emitter but also limit the resolution. In
addition, we have shown that the intensity of the localized
emission increases linearly with the size of the nonlinear
left-handed device unlike right-handed systems where the
conversion remains constant. Finally, we have proposed the
design of a 2D PhC drilled in LiNbO; capable of mimicking
the necessary left-handed properties to generate localized
second-harmonic emission in the visible range of frequen-
cies. We have shown that in accordance with the theory, the
position of the focused signal depends only on the location
of the pump emitter. We believe that these results open in-
teresting routes for molding the second-harmonic emission in
compact photonic crystals or metamaterials and hope that
this intriguing localization effect will soon be experimentally
explored.
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